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Introduetion. If  f ( x )  is an analytic and univalent function of  the complex 

variable x in the unit circle S = {x: Ix I <  1} and f ( 0 ) =  Yo, then the image f ( S )  
of  S contains a circle with radius ro = 1If'(0)1. Even when f ( x )  is not univalent, 
the imagef(S)  of  S contains a circle with radius k If'(0)1, where k is the constant 
of  Bloch(1). 

The aim of  this paper is to prove theorems, similar to the last statement, for 
some mappings of n-dimensional Euclidean spaces and general Banach spaces 
into themselves. The idea of  the proofs consists in the following use of fixed 
point theorems (z): 

Suppose that S =  {x: Ilxll < 1} is the unit sphere in a Banach space X and 
that for a given y E X the mapping x - fl [ f (x )  - y] of  S into X has a fixed 
point x ~ S for some fl ~ 0. Then f ( x )  = y and so y is contained in the image 
J(S) of  S. Considering all such points y, we are looking for conditions under 
which the set of  these points contains a sphere with radius as large as possible. 

By S = S(x o,r) = {x: p(Xo,X) < r) we denote the sphere with center Xo and 
radius r in a metric space with metric p and by Bd(S) = {x:p(xo, x ) =  r} the 
boundary of S. (By (x, y) we denote the scalar product of  x and y. 

1. In this section a simple generalization to Hilbert spaces of  the fixed-point 
theorem of  Schauder (Theorem 1) and its applications are given. Before pro- 
ceeding with the proof  of Theorem 1, let us first note the following 

LEMMh 1. I f  X1 and X2 are closed subsets of a metric space X and 
f x : X1 -~ Y and f2 "- X 2 ~ Y a r e mappings(a) of X 1 and X z into a metric space Y, 

then 
f l (x )  for xE X 1  

f ( x )  = fz(x) for x e X z  

is continuous on X 1 U X 2 ,  provided that f l ( x ) = f 2 ( x )  on X1 n X2. 
The proof  is trivial. 

RE~ARK 1. Easy examples show that the assumption of  closedness of  the 

sets X~ and X2 in Lemma 1 is essential. 

(1) Bloeh's Theorem has been generalized to mappings of n-dimensional spaces by S. Bochner 
in [2]. 

(z) A particular ease of this idea has been used in [9], p. 734. 
(3) By "mapping" we always understand a continuous mapping. 
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THEOREM 1. Let f :  S--* X be a completely continuous mapping of the sphere 
S =  (x: I l x -  Xoll < r} in the Hilbert space X into X ,  such that 

(1) (x - Xo, f ( x )  -- Xo) < r 2 for  x ~ Bd(S). 

Then there exisls a point ~ ~ S such that f ( ~ ) =  2(4). 

Proof. Define for x E S the function 

[ f , ( x  ) = f (x )  for x X, = (x: I!f(x)-xoll ~ r) 
1 f ( x )  - x o 

g(x) -- Xo + r l lS(x) -  XolI forx X -- ( x : l l s (x3 -  xoll->r) 

Then, by the continuity o f f ,  the sets X1 and X 2 a r e  closed subsets of S, and 
for x E X1 n X 2 = (x: [if(x) - x 0 II = r) obviously f~(x) =f2(x). Hence, by 
Lemma 1, g(x) is a continuous function on S. Moreover, since S = X I u X 2  
and f is completely continuous on S, it follows that g is also completely con- 
tinuous on S. Thus by ~ g ( x ) -  Xol ] < r and by the theorem of Schauder [10, 
Theorem 2] there exists a point ~ such that ~ = g(~). Supposing g(~) =f2(~) = ~, 
we get 

f ( £ ) - x  0 _ £ _ x  o. 
(2) r Ilf( )- xoll 

Hence i1 g - X o  I] = r, i.e. ~ ~ Bd(S). On multiplying both sides of  (2) scalarly 
by f (g)  - Xo, it follows from (1) that r Hf(~) - Xo II --< r2- But then, by the de- 
finition of g(x), we have g = g(~) =f(:~). 

LEMMA 2. Let f : S - -  X be a mapping of a sphere S =  ( x : l t x -  xoll ---- r) 
in the Hilbert space X into X ,  such that for  some fl # O, the mapping x + fir(x) 
is completely continuous on S. Suppose further that for  some given . ~ X  
we have 

(3) ( x -  Xo, f l [ f ( x ) -  37]) < 0 for every x E Bd (S). 

Then there exists a point ~ ~ S, such that f ( ~ ) =  37. 

Proof. We show that Theorem 1 applies to the mapping h(x) = x + f l [ f ( x ) -  37]. 
In fact, since x + fl f(x) is completely continuous, it follows that h(x) is com- 
pletely continuous, and it remains to verify that (1) holds with f replaced by h. 

Indeed, for x e B d ( S ) w e  have ( X - X o , X - X  o + f l [ f ( x ) -371 )  = IIx- oll 2 
+ ( x -  Xo, fl[f(x) - 37]) = r 2 + (x - Xo, f l [ f ( x ) -  37]). Hence by (3), the assumption 
(1) holds with f replaced by h. By Theorem 1 there exists a point ~ = h($), and 
since fl # 0 it follows that f($) = 37. 

Putting, in Lemma 2, Xo = 0 and either fl = 1 or fl = - 1 we obtain the following 

(4) For mappings of finite dimensional spaces, Theorem 1 can be derived from a result 
ofA. Abian and A. B. Brown [1]. 
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TrmOREM 2. I f  f :  S ~ X is a mapping of the sphere S = {x: II x 11 --< r} in 
the Hilbert space X into X such that for  some given ~ either 

(a) (x , f (x))  < (x,y,) for  ~ x II = r a n a  x + f ( x )  is completely continuous in S 
or 

(b) (x,f(x))  >_ (x,~) for  II x II = r and x - f (x)  is completely continuous in S, 
then there exists a point 2 ~ S, such that f ( 2 ) =  .~. 

The following two examples illustrate the use of  Theorem 2. 

EXAMPLE 1. Let  X be the Euclidean 2n-dimensional space, {aj}j=~,2..., a 
sequence of  n real numbers, k - a positive integer and consider the mapping 
f :  X ---, X defined by 

t 2k- 1 (4) Y2j- 1 = - x2j-  1 - ajx2j 
2k-1 (j = 1,2, . . . ,n) 

LY2) = - - x 2 j  + a j x 2 i - 1  

where x = ( x l , x  2, "",x2,)  and y = (Yl,Y2, "",Y2,) are points of  X. 
Then the image of  the unit sphere S =  {x: Hxll z l} contains a sphere 

s ' =  {y: ]IYD ---- ro} with radius ro>(1 /2n)  ~-1. 

Proof. We have ~b(x) = (x , f (x))  = -  ~,)=~x2k2, and for II x ~ =  1 (i.e. for 
x E Bd(S)), tk(x) has a maximum for xt = x2 . . . . .  x2,. This maximum equals 

max Jlxll =t ~b(x) = - ( 1 / 2 n )  k-~ = - ro. Now, if ~ p II ---< ro then for x with II x II -- 1 
we have I(x,y)l ___< I1~II--< ro and therefore ( x , y - ) > - r o .  It follows, that for 
every II ~ II ~ ro we have ( x , f ( x ) ) <  (x,~) for x with 11 x !1 = 1. Moreover,  since 
X is finite-dimensional, x + f (x )  is completely continuous and therefore the 
assumption (a) of Theorem 2 is satisfied. Thus, by Theorem 2, there exists a 
point ~ e S such that f (~)  = ~. Hence each point p ~ S' is an image of  some point 
~ES .  

REMARK 2. Let us note that the result obtained in the above example is in 
general the best possible. In fact, if X is the real plane (i.e. n = 1) and k = 2 
the mapping (4) has the form 

Yl = -x31 - alx2 
(4') L Y2 = --Xa2 -t- a l x  1 

Therefore, by the result of  Example 1, the map of  the unit circle under map- 

ping (4') contains a circle ~ y [I < ro with radius ro > ½. Now taking al  = 0, 
we obtain Yl = -xla;  Y2 = -x32, thus xl = _y~/3, x2 = -yX2/3 and the image 
of  the unit circle x 2 + x 2 < 1 is the set S'  of  points satisfying y2/3 + y2/3 < 1. 

It is easy to see, that the largest circle contained in S' has radius ½. 
Similarly it can be shown that for a (2n - 1)-dimensional Euclidean space X, 

the map of the anit sphere ~ x II --- 1 under the mapping: 
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2k- -  1 
Y 2 j - 1  = - - X 2 j - 1  --  a j x 2 j  

Y2j = _ x22 k- 1 + ajx2 j -  1, ( j  = 1 ,2 , . . . ,  n -  1) 

2k - -  1 
Y 2 n - t  = - - x 2 n - 1  

where a~,j = 1 , 2 , . . . , n - 1 ,  are real constants and k is a positive integer, con- 

tains a sphere S' = {y: ]l Y I[ ~ ro} with r o >__ 1 / ( 2 n -  1) g- 1. 

EXAMPLE 2. Let X = L2[0 ,1] be the Hilbert space of all square integrable 
functions on the interval [0,1] and consider the mapping f :  S -~ X of  the unit 
sphere S = {x = x(t): II x ]1 =< 1} into X defined by f ( x )  = x + StoX2(u)du. Then 
x - f ( x )  = - f~x2(u)du is a completely continuous mapping on S and for x 

with II x II = 1 we have 

] ( x , 1 - 2 ) [  _-< I l x l l ' l l l - 5 [ ]  = [ ] 1 - 2 [ I  

Hence, for x with ][ x I] = 1 we obtain 

(x,f(x)) - ( x , y )  -- 1 + x 0 ) [ 1  - 2 0 ) ] a ¢  >_- 1 - II 1 - 211. 

It follows that for 2 = 2(0 satisfying 1 > II 1 - 2 II the inequality ( x , f ( x ) )  > (x, 2) 
holds for x E Bd(S).  Thus the assumption (b) of  Theorem 2 is satisfied. By 

Theorem 2, we obtain that the imagef(S) contains a sphere S' = {y: I1Y - 1 II -<-- 1}. 
i t  is easy to verify that S'  is the largest sphere with center Yo(0 = 1 contained 

in the image f ( S )  of  S. In fact, taking any constant function Y(0 = 2 + e with 
e > 0 and assuming that for some x = x(0  there is J(x)  = 2 + e, we obtain 
x(t)  = const = c and C 2 + C - -  (2 + ~.) = 0. Hence [c] > i and thus [[ x [l > 1. 

2. In this section some consequences of the contractive-mapping principle 
and their applications are given. The idea of use of  the contractive mapping 
principle is analogous to that used in [5, p. 148] for finding of  the so-called 
resolvent of a non-linear operator. 

Let us call a mapping g : X ~ X of a complete metric space X, with metric p, 
into itself y-contractive (0 < ~, < 1), if 

(5) p(g(x),  g(y)) <= yp(x, y) 

holds f o r a l l x , y e X .  If  (5) holds for all x , y  belonging to a sphere S in X, then 
g is called y-contractive in S. 

It is known that 

(6) If  g : S ~ X  is y-contractive in the sphere S = S(xo, r) contained in a 

complete metric space X and if for Xa = g(xo) we have p(xo,xl)<= ( 1 -  y)r, 

then the sequence x, = g(x ,_1)  , n = 1,2,. . .  converges to the unique solution 
x c S (xo , r )  of the equation g ( x ) =  x [7, p. 49, Remark 2]. 

Let now f :  X ~ X be a mapping of a Banach space X into itself. We say that 
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the sequence (g,fl,7,r, xo) has the property P and write (g,fl,7,r, Xo)~P if the 
mapping gx - flf(x) is y-contractive in the sphere S = S(xo, r)(S). 

Note, that if(a, fl,7, r, Xo) e P and y is any point of X, then g(x) = ctx- fl[f(x) - y] 
is ),-contractive in S(xo, r ) and, for x x = g(xo) and Yo =f(xo) ,  we have 

p(xo,xl)=HXo-gXo +/~(yo-y)l l  = l l - g l l l x o H  + / ~ l l y o -  eli. 

Hence, for y satisfying [lYo- Y[[ < [ ( 1 -  7 ) r - [ 1  - g l  IlXoll]/l#l, we ob- 
tain p(Xo,X 0 < ( 1 -  7)r. Therefore it follows from (6) that if (g,fl,7,r, Xo)~P, 
then there exists a unique point x~S(xo, r), such that g x - f l [ f ( x ) - y ]  =x, 
i.e. y = ((1-a)/fl)x +f(x) (if f l ~  0). In other words: 
(7) If  (g, fl,7, r, Xo) ~ P and fl ~ 0, then the imagcf(S) of the sphere S = S(x o, r) 
under the mapping f (x)  + ( (1-g) / f l )x  contains a sphere S(yo, ro) with center 

yo=f(xo)  and radius r o = [ O - 7 ) r - l l - g l . l l X o l l ] / l ~  I. 
Noting that if S 1 c $2 then f (Si)  cf(S2), and putting in (7) g -- 1, we obtain 

the following 

THEOREM 3. I f  (1,fl,7, r, xo)eP, S(xo, r) c S = S ( 2 ,  f) and f l¢O then the 
image f(S)  of S contains a sphere S ' =  S(yo, ro) with center Yo =f(xo) and 
radius r o = ((1-7)/[/~l)r. 

For some applications of this theorem, let us recall the notion of derivative 
for mappings in Banach spaces. 

Let f:G--> H be a mapping of an open set G contained in a Banach space X 
into a subset H of a Banach space Y. Let x o e G, and suppose that there exists 
a linear mapping A:X--*Y such that for every x e X  we have 
l imt .  o [ f (x  o + tx) - f ( x o )  ] / t  = A(x). The mapping A is called the derivative o f f  
at the point x o and denoted byf ' (xo)  o r f ' .  

It can be shown (6) that:  
If  [y ,x]  ~ G is an interval and f : G ~  H has a derivative at each point of 

[y,x], then for every linear mapping U : X - ~  g we have ] [ f ( x ) - f ( y )  - U(Ay)][ 
< supo<o<lllf'(Y + 0 A y ) -  U!I'UAyll where A y =  x -  y. 

Substituting fit" for f and Ix = x for Ux in the last inequality, we obtain that 
i f f : S - ~  X is a mapping of a sphere S = S(xo, r) in the Banach space X into X 
having a derivative f '  at every point of S, then for each two points x, y ~ S we 

have [ I x - y - f l [ f ( x ) - f ( y ) ] [  I <= supg~s[ l f l f ' (~ ) - IH . l l x - y~ .  

Thus, if for some f l ¢  0 and 7, 0 < 7 < 1, 

(8) II - z II < 

is satisfied for every ~ e S(xo, r), we obtain that (1, fl,?, r, Xo) ~ P. 
Therefore, by Theorem 3, we have the following 

(5) An analogous condition was used in [8]. 
(6) [6, p. 592]. 
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THEOREM 4. I f  f : S ~ X  is a mapping of a sphere S =  S(2,f )  in a Banach 
space X into X,  having a derivative f '  at every point of some sphere S(xo,r) c S 
and if  there exist fl # 0 and 7, 0 < 7 < 1, such that (8) holds, then f ( S )  contains 
a sphere S ' =  S(yo,ro) with center Yo = f ( x o )  and radius r o = ( (1-~) / ] f l ] ) r .  

The next two examples illustrate the use of  this theorem in the case fl = 1. 

EXAMPLE 3. Let X = C [0,1] be the Banach space of all continuous func- 

tions on the interval [0 ,1] ,  with the norm Ilxl[--maxo---,- xlx(t)[ • Let 
f ( x )  = x(t) + .[~xZ(u)du(7). Then f ' (~)x  = x(t) + 2 .~ ~(u) x(u) du and 

[ I  - f ' ( ¢ ) ] x  = 2 j'~ ¢(u)x(u)du. Hence ~ [ I - f ' ( ~ ) ] x  II --< 2 f oll ¢(u)I. I x(u) la. and 

II l - f ' (¢)II  ____2 I oll¢(u)lldu= . 
Taking [[ ¢(u) ~ < r we thus get, by Theorem 4, ro = ( 1 - 2 r ) r ,  the maximum 

of  which is attained for r = ¼. Hence the image of  the sphere S(O,¼) contains 

the sphere S(0, I). 

EXAMPLE 4. Let X = C[0 ,1 ]  and l e t f ( x )  = x(s) + f~oe-S'[x(t) + ½x2(t)],dt, 
0 < s < 1. We have f ' ( ¢ )x ( t )  = x(s) + .[~e-st[1 - ~(t)]x(t)dt and for ~(t)~ S(0,1) 

we obtain 

IIf'(¢)- z I1 = max -~'(1 + {(t))dt = [1 + {(t)] dr. 
0 < s < l  

Let us now look for a fixed sphere S(xo,r) contained in S(0,1) and find 

sup~ osc~o.,> I[f '(O - I I[. For  ¢ ~ S(xo, r) we have 1 + ~(t) < 1 + Xo + r and 
f~ [1 + ¢(t)]dt < 1 + r + f~Xo(t)dt = 7. Therefore I l f ' ( ¢ ) - ,  II =< ~ for ~ ~ S('~,r). 
By Theorem 4, we obtain r o = ( 1 -  ?)r = - r ( r  + f~Xo(t)dt. Taking Xo(t ) = c 
=cons t ,  with c < 0 ,  we obtain from S(xo,r)= S(0,1) that r =  1 + c  and 

ro = - r ( r  + c ) =  - ( 1  + c)(1 + 2c). This has a maximum for c = - ¼ .  There- 
fore for Xo(t ) = - ¼, we have r = 1 + c = ¼ and r o = - ¼( -  ½) = I. I t  follows that 

the image f [S( -¼,¼)]  of  the sphere S(-¼,¼) contains a sphere with radius I. 

REMARK 3. The results obtained in Examples 3 and 4 are not the best pos- 
sible. We note also the following consequence of  Theorem 1: I f  f :  S ~ X is a 
completely continuous mapping of  a sphere S = S(O,r) in a Hilbert space X 

into X such that f [ B d ( S ) ]  = S, then there exists a fixed point x = f ( x ) ~ S .  
Indeed, i f f [ B d ( S ) ]  = S then evidently (x , f (x))  < r 2 on Bd(S),  i.e. condition (1) 

is satisfied (for Xo = 0) and by Theorem 1 there exists a point x such that x = f ( x ) .  

This result is well known for mappings of  spheres in finite-dimensional Euclidean 

spaces. Another well-known result, which can also be easily derived f rom 
Theorem 1, is: 

I f f :  S ~ X is a mapping of  a sphere in a finite dimensional Euclidean space X 

into X which is a homeomorphism on Bd (S) and for which f ( B d  (S)) = Bd (S), 

then S = f ( S ) .  

(7) This mapping was considered in [3, p. 136]. 
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We shall now prove a theorem, which is an analogue for Banach spaces to 
a "un i form"  version of the theorem on implicit functions for finite dimensional 
spaces. Before proving this analogue let us make some general remarks. 

First of all, we note that in infinite dimensional spaces X an isometric mapping 
f :  S---} S of a sphere S c X need not necessarily contain a sphere in X. Indeed, 
let X be the Hilbert space 12. i,e., the set of all sequences (x~,x2, . . . ,x , . . . , )  such 
that o~ 2 ~ = l x i  < ~ ,  where x~ are real numbers and let S be the unit sphere 
s - -  (x: II x II -<- 1} in X. Let f ( x )  = (0,xl,x2,. .-)  for x = (xl,x2,. . .) .  Then J(S) 
is nowhete dense in X and thus it does not contain any sphere in X. 

In what follows, we shall confine ourselves to mappings of the form x - F(x), 
where F(x) maps a Banach space X into itself. 

In the case that F(x) is completely continuous it is known that the image f ( S )  
of a closed unit sphere S c X (or even of a closed and bounded set) is a closed 
subset of X [4, p. 193]. A simple example shows that it is not true that the image 
f ( S )  contains a sphere in X. Indeed let us define F(x)=(x l ,0 ,O , . . . )  for 
x = (xl ,x2,  "") where x E 12. Then f ( x )  = x - F(x) = (O, x2,xa, ...), where F(x) 
is completely continuous, but f (S )  does not contain any sphere in X. Note how- 
ever, that in this last case we have l] F'(x)[l = 1 for every x e 12. In the case that 
I[ F '~  =< y < 1 it follows (for F(x) not necessarily completely continuous) that 
[ I f ' -  I~ = [[ F '  H =<-7. Hence, by Theorem 4, the image f (S )  of the sphere 
S = S(0, r) in a Banach space X contains a sphere in X of radius ( 1 -  7)r. 

T~OR~M 5 IfllF'(O)ll ~ ~ < 1, 
then the image f (S )  of the sphere 
r o = ((1 - 7)/2) 2 /K.  

Proof. We have [I F'(x)II = II 
_-< r + K 11 x 11(8) Hence for x 

[1F"(x) II < K f o r  I1 x II g r and r > ((1 - 7) /2K),  
s = ( x  11 x ll ~ r) contains a sphere of radius 

F'(O) + F'(x) - F'(O) [I < 7 + ~ F'(x) - F'(O) II 
satisfying l[ x II ~ ((1- 7)/2K) we obtain 

][ F'(x)II <= (1 + 7)/2< 1. Therefore Hf' - II[ = [1F' II ~ (1 + 7)/2 and by Theo- 
rem 4, the imagef(S) of the sphere S contains a sphere of radius ro = ((1 - 7)/2)2/K 
and center Yo = f(0). It is easy to show that J maps the sphere 
{x: [Ix 1] <-- ((1-7)/2K} onto S(yo, ro) in a one-to-one fashion. 
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